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PURPOSE. Determining the relationships between phenotype
and genotype of many disorders can improve clinical diagno-
ses, identify disease mechanisms, and enhance therapy. Most
genetic disorders result from interaction of many genes that
obscure the discovery of such relationships. The hypothesis for
this study was that image analysis has the potential to enable
formalized discovery of new visible phenotypes. It was tested
in twins affected with age-related macular degeneration
(AMD).

METHODS. Fundus images from 43 monozygotic (MZ) and 32
dizygotic (DZ) twin pairs with AMD were examined. First, soft
and hard drusen were segmented. Then newly defined pheno-
types were identified by using drusen distribution statistics that
significantly separate MZ from DZ twins. The ACE model was
used to identify the contributions of additive genetic (A), com-
mon environmental (C), and nonshared environmental (E) ef-
fects on drusen distribution phenotypes.

RESULTS. Four drusen distribution characteristics significantly
separated MZ from DZ twin pairs. One encoded the quantity,
and the remaining three encoded the spatial distribution of
drusen, achieving a zygosity prediction accuracy of 76%, 74%,
68%, and 68%. Three of the four phenotypes had a 55% to 77%
genetic effect in an AE model, and the fourth phenotype
showed a nonshared environmental effect (E model).

CONCLUSIONS. Computational discovery of genetically deter-
mined features can reveal quantifiable AMD phenotypes that
are genetically determined without explicitly linking them to
specific genes. In addition, it can identify phenotypes that
appear to result predominantly from environmental exposure.
The approach is rapid and unbiased, suitable for large datasets,
and can be used to reveal unknown phenotype–genotype
relationships. (Invest Ophthalmol Vis Sci. 2011;52:9195–9206)
DOI:10.1167/iovs.10-6793

Since the time of Mendel, identification of a genotype has
primarily relied on the identification of visible phenotypes

as biomarkers for genetic variation. Phenotype definitions can
range from biometrics such as eye color and height, which are
straightforward to measure, to more complex phenotypes that
rely on recognition of similarities between subtle qualitative or
quantitative clinical characteristics. Phenotypic definitions can
include measurement of multiple characteristics, such as phys-
ical features, laboratory values, and imaging results.1–4

Recognition of complex phenotypes, although occasionally
achieved by meticulous study of large datasets, formal manual
schemes to describe (retinal) morphology, or statistical analysis
such as that used in AREDS, more often has relied on an
individual or collaborating clinicians recognizing a phenotype
after prolonged, intensive study and contemplation. Specifi-
cally with regard to AMD, the description of endophenotypes
such as drusen size, drusen area, and pigment clumping, began
as qualitative hypotheses to be later confirmed by statistical
associations. Image analysis has the potential for a formalized
and unbiased discovery of new phenotypes through analysis of
high-dimensional feature matrices obtained from the images of
a tissue.5 Such an approach is especially helpful when a phe-
notype can be defined by the patterns or distributional rela-
tionships among lesions within the tissue.6 Recent advances in
our understanding of specific genetic risk factors associated
with age-related macular degeneration (AMD) coupled with
the complex fundus appearances seen in this disease offer an
ideal substrate to test this approach.

AMD is the most common cause of visual loss in the United
States and Europe and is a growing public health problem.7

Currently, almost 7.2 million Americans, or 6.5% of the U.S.
population 40 years of age and older, are estimated to have
AMD, and it is the cause of blindness in 54% of all legally blind
Americans.8 AMD is a major societal problem in terms of
disability and health care costs.9,10The prevalence of AMD is
expected to double over the next 25 years.11

A growing number of genes and genetic loci have been
shown to contribute to the development of the AMD phe-
notype (see http://www.hugenavigator.net/HuGENavigator/
geneProspector.do?query�age�related�macular), although
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only three of these account for large population-attributable
risk in the United States: complement factor H (CFH), ARMS2/
HTRA1 and complement component 2/factor 3 (CC2-CF3).
Based on the population-attributable risk of their study sam-
ples, it has been estimated by various investigators that 40% to
75% or more of genetic variance from AMD can be explained
by common variation at the five most common single nuclear
polymorphisms (SNPs).12,13 The genotypic landscape of AMD
remains complex and undiscovered, with novel data added
regularly.

AMD patients exhibit diverse and complex fundus appear-
ances. The clinical hallmark of AMD is the drusen deposit,
although deposition of other clinically invisible accumulations,
such as basal laminar and basal linear deposits, may be more
specific.14–16 In fundus photographs, drusen appear as yellow
or white, round or confluent deposits between the basement
membrane of the retinal pigmented epithelium (RPE) and the
elastic portion of Bruch’s membrane.17 Cross-sectional, longi-
tudinal, and interventional studies, including the Age-Related
Eye Disease Study (AREDS), have evaluated the role of drusen
and other factors and shown that AMD visual outcome is
related to clinically visible characteristics.18–22 These charac-
teristics include the presence of large drusen (�125 �m), the
presence of multiple intermediate drusen (�63 and �125 �m),
the presence of RPE pigmentary abnormalities (hyperpigmen-
tation), and contralateral disease severity.17,19,21 In addition,
AMD shares, with other forms of macular degeneration, the
development of RPE atrophy and an increased incidence of
choroidal neovascularization (CNV).23 An important obstacle
to the recognition of AMD phenotype–genotype relationships
is that after the development of CNV (exudative AMD), exuda-
tion and atrophy can obscure the presence and relationship of
drusen and other AMD-related lesions.

Many investigators regard the appearance and/or enlarge-
ment of drusen as a stochastic process in which an increasing
number or size of drusen are associated with increased pro-
gression of disease. In this view, drusen, and other AMD lesions
are randomly distributed over the macula (central fundus) in a
pattern that is independent of genotype, but may over time
increase or, in rare instances, decrease in area. The risk of
incident complication of CNV has been associated with a
threshold drusen size and number,24 but not with their distri-
bution. In 2001, Hageman et al.17 concluded that phenotypic
variation, especially the amount of RPE pigmentation and size
and extent of drusen, is associated with AMD severity, but is
not related to genotype, based on the data available to them.25

Exceptions to the assumption that a larger drusen burden
parallels progression are common. For instance, a rare form of
AMD known to be associated with a mutation in fibulin-6
(hemicentin-1), an RPE basement membrane component, pres-
ents with small, central drusen and small, parafoveal regions of
geographic atrophy that progressively enlarge to involve the
fovea.26 Seddon et al.27 showed a heritable contribution to
early, intermediate, and advanced AMD, including drusen area,
which has a hereditability of up to 0.71. Hammond et al.28

evaluated early maculopathy, using twin data, and came to
similar conclusions. Peripheral retinal drusen and reticular pig-
ment changes have been shown to be related to CFH geno-
types.29

In this study, we hypothesized that there are heritable
drusen distribution phenotypes for AMD, that they are associ-
ated with genotypic variation, and that these phenotypes can
be discovered and quantified by using automated image analy-
sis of fundus (retinal) color images. Because of the topographic
complexity of AMD abnormalities, we believe that sub- or
endophenotypes of nonexudative AMD may provide the nec-
essary complexity and information content to establish geno-
typic relationships.

Methods for segmentation of drusen in fundus photo-
graphs—that is, for partitioning the image into two sets of
pixels, one for the drusen and one for the nondrusen back-
ground— have been described, but have always required
some human input and were thus never fully automated and
unbiased. Recent methods have been based on mathematical
morphology,30 histogram-based adaptive local threshold-
ing,31 background removal and histogram-based threshold-
ing,32 and pixel classification.33 In our experience, it has
been difficult to efficiently and automatically detect all
drusen using single detector approaches, given the large
range of drusen size (from discrete, hard drusen to large
confluent so-called soft drusen), shape (described as punc-
tiform, confluent, or fused), and contrast (from indistinct to
distinct).19,34 Thus, we developed two wavelet-based lesion
detectors to recognize hard and soft drusen separately in
retinal color images, which we showed to be superior to
other approaches.35

After detection and segmentation of drusen, their num-
ber, size, and distribution can be numerically characterized
as features. A mathematical definition of “feature” provides
a repeatable, quantifiable description and thus an accurate
and objective representation of the patients’ clinical appear-
ance, although this may not correspond to the clinicians’ or
geneticists’ implicit concept of a phenotypic characteristic.
Thus defined, features will in some cases directly corre-
spond to clinically visible lesions or relationships between
lesions (Table 1). If these features are shown to be under
genetic influence, they can reveal novel or confirmatory,
quantitative, objective phenotype– genotype relationships.

In this preliminary study, we selected fundus photographs
from a unique genetic population, a cohort of identical (mo-
nozygotic; MZ) and fraternal (dizygotic; DZ) twins, in which
one or both were affected by AMD.27 Targeting a population of
twins that manifest AMD allows us to use powerful classic twin
modeling methods to select gene-associated features that have
not been shown or been suspected of being linked to an AMD
phenotype and to efficiently define disease features rather than
nondisease or wild-type variations.

The purpose of this study is to test our hypotheses that
heritable macular drusen distribution phenotypes exist for
AMD, that they are associated with genotypic variation, and
that these phenotypes can be discovered and quantified
using automated image analysis of fundus (retinal) color
images.

METHODS

Subjects

The study population was derived from the National Academy of
Sciences–National Research Council World War II Veteran Twin
Registry as described elsewhere,36,37 which includes 15,924 white
male twin pairs born between 1917 and 1927 who served in the U.S.
armed forces. From this registry, a subset of 840 twins were en-
rolled in the U.S. Twin Eye Study, including 340 twin pairs (n �
680) in which one or both twins reported having AMD, 51 twin
pairs (n � 102) in which neither twin reported having AMD, and 58
singletons (Seddon JM, et al. IOVS 1997;38:ARVO Abstract 3172).27

All 840 twins in this subset were photographed, and the macular
photographs were graded according to the Clinical Age-Related
Maculopathy grading System (CARMS)36 and the Wisconsin grading
system.38

This preliminary or proof-of-concept study is based on the initial set
of twins who were identified and digitized. Digitization was performed
in alphabetical order, and this data set represents approximately half of
the NAS-NRC WWII Veteran Twin Registry twin data set that was
included in prior AMD studies.27 Entry criteria included twin pairs, for
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which at least one eye had adequate complexity of AMD (nonexuda-
tive AMD) and for which photographs of adequate quality for analysis
were available. One hundred sixty-two twins of 81 twin pairs were
graded, and the image quality was assessed. Of these, 148 subjects
(representing 74 twin pairs) met the entry criteria of CARMS grade 3 in
the worse eye (extensive intermediate or large drusen, with or without
RPE abnormalities) and were of adequate image quality for human
grading.

Fundus images were originally acquired with a 30° (FF4; Carl
Zeiss, Dublin, CA) or 60° (Canon, Tokyo, Japan) fundus camera,
with the field centered near the fovea, and recorded on color film
(Ektachrome 100; Kodak, Rochester, NY). The film images were
shared with us by the U.S. Twin Study of AMD (courtesy of author
JMS) and digitized at Iowa by a high-throughput digitization device
that used a CCD detector, at a resolution of 1953 � 1301 at 16 bits
per pixel per color channel. Both eyes of each twin and both twins

TABLE 1. Visual Features Evaluated in This Study

No. Description Detector Color Texture Shape Quantity Spatial P

1 Wavelet analysis of the lesions53 Shape (sens) ✔ ✔ ✔ 0.221
2 Wavelet analysis of the lesions53 Shape (spec) ✔ ✔ ✔ 0.310
3 Wavelet analysis of the entire field of view (FOV)53 None ✔ ✔ ✔ 0.940
4 Wavelet analysis of the 1st 1/4 of the FOV, from nasal to

temporal53
None ✔ ✔ ✔ 0.956

5 Wavelet analysis of the 2nd 1/4 of the FOV, from nasal
to temporal53

None ✔ ✔ ✔ 0.968

6 Wavelet analysis of the 3rd 1/4 of the FOV, from nasal
to temporal53

None ✔ ✔ ✔ 0.587

7 Wavelet analysis of the 4th 1/4 of the FOV, from nasal
to temporal53

None ✔ ✔ ✔ 0.215

8 Average color of the lesions in the RGB space54 Shape (sens) ✔ 0.266
9 Average hue of the lesions54 Shape (sens) ✔ 0.860

10 Average color of the lesions in the RGB space54 Shape (spec) ✔ 0.576
11 Average hue of the lesions54 Shape (spec) ✔ 0.576
12 Average number of neighbors in the triangulated lesions

graph55
Shape (sens) ✔ ✔ 0.751

13 Average distance between neighbors in this graph55 Shape (sens) ✔ ✔ 0.422
14 Distribution of the distances to the centroid of the

lesions56
Shape (sens) ✔ 0.403

15 Average number of neighbors in the triangulated lesion
graph55

Shape (spec) ✔ ✔ 0.422

16 Average distance between neighbors in this graph55 Shape (spec) ✔ ✔ 0.793
17 Distribution of the distances to the centroid of the

lesions56
Shape (spec) ✔ 0.181

18 Histogram of the lesions along the x-axis, from nasal to
temporal56

Shape (sens) ✔ 0.187

19 Histogram of the lesions along the x-axis, from nasal to
temporal56

Shape (spec) ✔ 0.998

20 Average elongation of the lesions57 Shape (sens) ✔ 0.793
21 Average elongation of the lesions57 Shape (spec) ✔ 0.246
22 Wavelet analysis of the lesions53 Texture ✔ ✔ ✔ 0.908
23 Area covered by the lesions22 Texture ✔ 7.58 � 10�5

24 Distribution of the distances to the centroid of the
lesions56

Texture ✔ 0.377

25 Coefficient of dispersion58 Shape (spec) ✔ 0.609
26 Coefficient of aggregation58 Shape (spec) ✔ 0.152
27 Mean crowding vector59 Shape (spec) ✔ 0.928
28 Mean crowding regression59 Shape (spec) ✔ 0.451
29 Coefficient of dispersion58 Texture ✔ 0.783
30 Coefficient of aggregation58 Texture ✔ 0.152
31 Directional correlogram60 Texture ✔ 0.084
32 Anisotropy index (extracted from the directional

correlogram)60
Texture ✔ 0.266

33 Fractal dimension (extracted from the directional
correlogram)60

Texture ✔ 0.368

34 Fractal dimension (extracted from the wavelet
analysis)61

Texture ✔ ✔ 0.901

35 Edge histogram62 Texture ✔ ✔ 0.227
36 Number of lesions22 Shape (spec) ✔ 0.326
37 Moran’s 1 of the drusen distribution (spatial

autocorrelation)48
Texture ✔ 0.040

38 Geary’s c of the drusen distribution (spatial
autocorrelation)47

Texture ✔ 0.012

39 Standard deviational ellipse57 Shape (spec) ✔ 0.318
40 Standard deviational ellipse57 Texture ✔ 0.215
41 Semivariogram of the drusen distribution46 Texture ✔ ✔ 2.67 � 10�4

Shape (sens) and shape (spec) stand for the shape-based detector, with a high sensitivity or high specificity detection setting, respectively.
Texture refers only to the texture based detector.
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in a pair were imaged with the same camera, and a 30° field of view
was evaluated (where available). Most images were of a 30° field of
view; if they were not, they were cropped to 30° before image
analysis.

Study Design and Definition of Terminology

We set out to test our hypothesis in two steps: first, by determining the
drusen distribution features (potential phenotypes) that are capable of
differentiating MZ from DZ twins to a statistically significant threshold
and then by evaluating the heritability of these potential drusen distri-
bution features using an ACE model.27,39 In this preliminary study, we
tested these hypothesis-driven relationships without explicitly associ-
ating each feature to one or more specific AMD-associated genes.

We mathematically defined and calculated a drusen distribution
feature as a number that expresses how close all drusen in an image fit
a certain distribution type. For example, a clustered drusen distribution
feature would have a larger value if the drusen in the image were
clustered together and a smaller value if the drusen were more evenly
dispersed across the image. We then calculated the incongruence
between twin pairs for each of the drusen distribution features. A
larger incongruence for a given twin pair and for a specific drusen
distribution feature means that the two individuals’ fundus images
differed more in this feature, and a smaller incongruence means that
they were more similar when measured according to this feature. If we
observed a larger average incongruence for a specific drusen distribu-
tion feature in DZ than MZ twin pairs, we judged that this feature was
more likely to be under genetic control, because MZ twins share
almost their entire genetic material, whereas DZ twin pairs on average
share only half.

For details of how we performed automated drusen detection, calcu-
lated drusen distributional features and drusen higher order statistics,
measured image incongruence measures between images, and calculated
intertwin incongruence for a feature, see Appendix sections A–D.

Outcome Parameters and Data Analysis

If a drusen feature is controlled genetically, we expect intertwin (i.e.,
twin A to twin B) image incongruencies and intratwin (i.e., right eye
compared to mirror image of left eye of individual) image incongruen-
cies (definitions illustrated in Figs. 1, 2) to be similar in MZ twin pairs.
Except for epigenetic or somatic variation, both eyes of an individual
should have the same nuclear DNA. Therefore, the incongruency (i.e.,
image distance) between two persons is not expected to be smaller
than the differences between the eyes of each of these persons. For DZ
twin pairs, this expectation is not necessarily the case. One would
expect the intertwin image incongruencies (between the two individ-
uals in a twin pair) to be larger than the intratwin image incongruen-
cies (between the eyes of a single individual), as the twins within any
pair are on average more genetically heterogeneous (farther apart). As
a consequence, on average, if a feature or group of features, f, is
controlled genetically, the intertwin incongruence or distance, Df, as

FIGURE 1. Examples of automated
soft and hard drusen detection. (A)
Left eye of a twin with predomi-
nantly hard drusen. (B) Circles out-
line hard drusen candidates that
were above a predefined probability
threshold, as detected by our shape-
based hard drusen detector applied
to image (A). (C) Right eye of twin
with predominantly soft drusen, as
well as some pigmentation centrally.
(D) Outlined region indicates a soft
drusen-containing area that was over
a predefined probability threshold, as
detected by our soft drusen texture–
based detector applied to (C). The
region in (D), although primarily
consisting of soft drusen, also in-
cludes a small area of pigmentation
adjacent to confluent soft drusen that
is ignored by the segmentation
method.

FIGURE 2. Definition of incongruencies between twins. The incon-
gruency between twin A and twin B is the ratio of the average
intertwin incongruency (dashed arrows) and the average intratwin
incongruency (solid arrows).
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defined in Appendix D, in a given twin pair is approximately equal to
the distance between MZ twin pairs and smaller than the distance
between DZ twins. The larger the average intertwin incongruence Df

for feature(s) f, therefore, the greater the possibility that f is not
completely controlled genetically and is under partial or complete
(shared or nonshared) environmental or epigenetic control. Because
few phenotypes are 100% genetically determined, we do not expect
that drusen features would show a perfect separation between all MZ
and DZ twin pairs. However, we do expect to find a significant
difference in the distribution of the incongruencies between MZ twin
pairs and that of the incongruencies between DZ twin pairs. To
measure the statistical significance of the difference, if any, between
these two distributions, we used the two-sample Kolmogorov-Smirnov
test (K-S test).40 The K-S test was applied to the incongruency distri-
butions derived from a single drusen feature. Since we also computed
the total incongruencies for two features, we used a 2-D generalization
of the K-S test to measure the significance if any of the differences on
those combinations of features.41 The results were presented in terms
of P value, and a significance level of 95% was used to analyze the
results. Let m1 � 42, the number of MZ twins, and m2 � 32, the
number of DZ twins in the dataset, and let M be the normalized
number of samples:

M �
m1m2

m1 � m2

The condition for the P to be meaningful is M � 4, for the 1-D K-S test,
and M approximately equal to or greater than 20, for the 2-D K-S
test40,42; in our dataset, M � 18.16. For this study, only 1- and 2-D
values or vectors were compared.

Structural Equation Modeling of
ACE Contributions

Using standard structural equation modeling techniques on data for
twins reared together, additive genetic effects (A), shared environmen-
tal effects (C), and nonshared environmental effects (E) can be differ-
entiated.27,39 In brief, this technique assumes that additive genetic
effects (A) result from multiple genes, whose influences are additively
combined. Shared environmental effects (C) are environmental factors
shared by siblings reared in the same family or circumstances. Non-
shared environmental effects (E) are environmental effects unique to
an individual, or their epigenetic variation, making the twins less
similar. Assuming that both MZ and DZ twins share similar contribu-
tions of familial environmental effects on the phenotype (the so-called
equal-environments assumption), any greater similarity between MZ
twin pairs than between DZ twin pairs should be the result of genetic
influences.43 The genetic models were estimated by full-information
maximum likelihood estimation, with the program OpenMX.44

OpenMX arrives at estimates of the A, C, and E components through an
iterative process, during which it identifies those values of the com-
ponents that best reproduce the observed variance–covariance matri-
ces for the MZ and DZ twins, considering the theoretical model of how
the different components affect twin resemblance. The full ACE model
is statistically compared to the more restricted AE, CE, and E models,
where the value of one component—or, in the E model, two compo-
nents—had been fixed at 0. By comparing the fit statistics of the full
model with the more restricted ones, the impact on a phenotypic
measure of a specific component can be estimated. For example, if the
A component is removed from the model and the resulting, more
restricted, CE model is found to have a statistically significant reduction
of model fit compared with the full ACE model, it suggests that the A
component is statistically significant, and it is necessary to include it in
the model. The Akaike Information Criterion (AIC)45 was used as an
indicator of model fit. Lower AIC values for a model compared with
another model indicate that the first model mentioned has a better fit
and should be preferred.

RESULTS

All features could be successfully measured from all images.
The resulting 1-D Kolmogorov-Smirnov analysis P values are
given in Table 1. Most features did not have intertwin incon-
gruencies that were significantly different between the MZ
and DZ twins. The exceptions were features 23 (P �
0.0000758, area covered by lesions), 41 (P � 0.000267,
semivariogram of drusen distribution),46 38 (P � 0.0124,
Geary’s spatial autocorrelation of drusen distribution),47 and
37 (P � 0.0403, Moran’s spatial autocorrelation of drusen
distribution).48 Feature 23 (area covered by lesions) is related
to the quantity of drusen, whereas 41 (semivariogram of
drusen distribution), 38 (Geary’s spatial autocorrelation of
drusen distribution), and 37 (Moran’s spatial autocorrelation of
drusen distribution) are related to the spatial distribution. Scat-
terplots illustrating the discrimination ability of these four
features are shown in Figure 3.

For combinations of two features, 120 feature pairs had an
uncorrected P � 0.05, including feature pairs 23 and 41 (P �
0.000328), 23 and 37 (P � 0.000531) and 23 and 38 (P �
0.000678). Scatterplots (Fig. 4) illustrate the ability of these
pairs of features to discriminate the MZ from the DZ twin pairs.
As explained in the methods section, selected MZ twin pairs
did not follow the expected intertwin incongruence and dem-
onstrated high intertwin distances (Fig. 5).

Features 23 (area covered by lesions), 41 (semivariogram
of drusen distribution), 38 (Geary’s spatial autocorrelation
of drusen distribution), and 37 (Moran’s spatial autocorrela-
tion of drusen distribution) exhibited an MZ versus a DZ
twin pair classification accuracy of 75.7%, 74.3%, 67.6%, and
67.6%, respectively. We observed nonsignificant clustering of
incongruencies for DZ twin pairs, meaning that the tail of the
distribution did not monotonously decrease, but rather had a
few peaks.

To illustrate the correspondence between the most discrim-
inant drusen features and their human visual appearance, ex-
amples of twin pairs with indicated intereye and intertwin
incongruencies are displayed in Figure 6, for feature 23, and in
Figure 7, for feature 38. Feature 38 (Geary’s autocorrelation)
measures the spatial autocorrelation, with emphasis on the
local autocorrelation at a scale adapted to the drusen (the
resolution of the soft drusen detector), as opposed to feature
37 (Moran’s autocorrelation) (Fig. 8). Feature 41 (semivario-
gram of drusen distribution) is a generalization of Geary’s
spatial autocorrelation of drusen distribution, where the scale
varies continuously (Fig. 9). A positive autocorrelation means
that neighboring areas have similar values. Applied to the
spatial distribution of drusen probability, a positive autocorre-
lation discerns the presence of large lesions such as soft
drusen, and a negative autocorrelation distinguishes the pres-
ence of small lesions such as hard drusen.

Each of the features identified as significant was analyzed
using structural equation modeling (ACE) to assess the relative
contributions of genetic and environmental contributions. For
three of the four features evaluated, the AE model (lacking any
shared environmental effect) was found to be the best fit. In
the remaining case, the E model (to which only nonshared
environmental factors contribute) was the best fit for the ob-
served data. Specifically, features 23 (area covered by lesions),
41 (semivariogram of drusen distribution), and 37 (Moran’s
spatial autocorrelation of drusen distribution) had 55%, 77%,
and 25% genetic contribution, respectively, with the remainder
from nonshared environmental contribution. The best fit
model for feature 38 (Geary’s spatial autocorrelation of drusen
distribution) was solely based on nonshared environmental
components.
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DISCUSSION

The results of this preliminary or proof-of-concept study show
that heritable, but previously unrecognized, drusen distribu-
tion phenotypes exist in AMD, that these are associated pre-
dominantly with genotypic variation, and that these pheno-
types can be discovered and quantified using automated image
analysis of fundus color images. Image analysis of digitized
fundus images of AMD patients has the potential to identify
heritable features that differentiate MZ from DZ twins, indicat-
ing that specific differences in drusen quantity and distribution
are largely determined by genetic factors. We have recently

demonstrated the use of this approach in identifying heritable
optic nerve head shape components.49

The results also allow initial conclusions to be made about
the mapping between AMD genotype and drusen phenotype.
Although color and texture features are relevant to the detec-
tion of drusen, these features were not significant in separating
MZ from DZ twin pairs, within the limits of a three-color
channel camera–scanner combination. As a consequence, the
observed differences in drusen color and texture among sub-
jects were not found to be affected by genotype within this
dataset. We have not yet explored the shape parameters thor-
oughly enough to comment on whether drusen shape varia-

FIGURE 3. Average intratwin incongruencies as a function of the average intertwin incongruencies. The incongruencies are computed with
respect to the four most discriminant visual features: (a) the area covered by drusen, feature 23; (b) the semivariogram of the drusen distribution,
feature 41; (c) the Geary’s c of the drusen distribution, feature 38; and (d) the Moran’s I of the drusen distribution, feature 37. The incongruencies
are displayed on a logarithmic scale.
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tions among subjects are likely to be affected by genotype. A
more advanced study of drusen shape would be needed, to
answer the question of shape determination.

Quantity and spatial distribution features of drusen are
evidently highly relevant in separating the MZ from the DZ
twin pairs. Indeed, we have shown that intertwin incongru-
encies, based on drusen quantity (feature 23, area covered
by lesions), and drusen spatial distribution (feature 41, semi-
variogram of drusen distribution; 38, Geary’s spatial auto-
correlation of drusen distribution; 37, Moran’s spatial auto-
correlation of drusen distribution), are significantly different
for MZ and DZ twin pairs. ACE structural equation modeling

showed that there is a substantial genetic component (55%–
77%) to the variation in these features. The lack of any sub-
stantial shared environmental effect of these features is not
surprising, in that AMD is a disease associated with advanced
age. Twins spend perhaps the first 18 years of life together, but
the AMD twin pairs have lived much more than half of their
lives apart.

As expected, some MZ twin pairs had relatively large inter-
twin incongruencies and were therefore misclassified as DZ.
Three examples of such MZ twin pairs with large intertwin
incongruencies are shown in Figure 5. The most likely explana-
tion is that these fundus phenotypes are not 100% under genetic

FIGURE 4. Intertwin incongruencies, shown on a logarithmic scale, for three discriminant pairs of visual features: (a) visual features 23 and 41;
(b) visual features 23 and 38; and (c) visual features 23 and 37. Feature 23 is the area covered by drusen, 41 is the semivariogram of the drusen
distribution, 38 is the Geary’s c of the drusen distribution, and 37 is the Moran’s I of the drusen distribution. Because phenotypes are not under
complete genetic control, a perfect separation between all MZ twin pairs and DZ twin pairs is not expected in examining these feature pairs. For
example, MZ twin pairs (a), (b), and (c) (outliers) were misclassified as DZ by all three feature pairs The corresponding fundus images for these
twin pairs are shown in Figure 5.
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control; partial shared or nonshared environmental exposure
plays a role, and such an effect is not unlikely for a phenotype that
typically manifests with advanced age. Other potential explana-
tions are epigenetic effects or that the genes contributing to a
particular drusen feature may not be identical, because of the
somatic mutations.50 In other words, a perfect separation be-
tween MZ twin pairs and DZ twin pairs, according to the drusen
phenotypes discovered in this study, is unlikely.

Three weaknesses of this study are related to the inherent
limitations of the twin population. First, the twin pairs do not
represent all stages of AMD, but rather are biased toward the
moderate to severe forms of nonexudative AMD. We incorpo-

rated this potential bias when we restricted the inclusion to
those with CARMS grade 3. This bias may lower the statistical
power of detecting some features of a phenotype, as the number
of available twin pairs is reduced. The alternative scenario of
including nonexudative AMD subjects with less severe disease
(CARMS grade 2) would potentially include subjects who had

FIGURE 5. Because AMD fundus phenotypes are never under 100%
genetic control, there was no perfect separation between all MZ twin
pairs and DZ twin pairs, as exemplified by the fundus image feature
pairs of the twins shown in Figure 4. (a–c) Fundus images for both
individuals in three sets of MZ twin pair outliers (indicated with the
corresponding letters in Figure 4) that were misclassified as DZ.

FIGURE 6. (a–c) White arrows: typical interimage incongruencies for
three twin pairs with feature 23, representing the area covered by
drusen, and the intertwin incongruency for feature 23 between the
individuals in each twin pair. (a) MZ twin pair with similar feature 23
(drusen area) values for all four eyes, and an intertwin incongruency of
0.977; (b) DZ twin pair had a larger feature 23 for both eyes of
individual A than for individual B, but contralateral eyes for each
individual had similar values and an intertwin incongruency of 1.68; (c)
DZ twin pair with drusen in both eyes of individual A but not in those
of individual B and an intertwin incongruency of 6.26 with respect to
this feature.
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incompletely expressed phenotypes (i.e., a few drusen or mini-
mal pigment change) that may dilute feature detection. We
judged that the inclusion of minimally or mildly affected AMD
subjects may increase the statistical variability of a stage-expressed
feature or detract from the statistical signal by including subjects
with incompletely expressed phenotypes.

Second, this twin population contains exclusively males, as
most of the soldiers in World War II were male. Thus, any
sex-specific skew in phenotype or AMD-associated allele fre-

quencies may bias our results. No sex-specific differences in
genotypes have been detected in AMD to date. Third, we did
not include genetic data in this study. One approach to further
explore the genetic basis of drusen distribution would be to
determine whether known AMD-associated genes or genome-
wide single-nucleotide polymorphisms (GW SNPs) preferen-
tially segregate in image-analysis–based phenotypic features.

Obviously, this preliminary study is unable to provide in-
sights into the genes that have a role in the drusen distribution
phenotypes that we have found. One approach to further
explore the genetic basis of drusen distribution would be to
perform a genome-wide association scan on the full twin data-
set. Such a study may have sufficient power to identify the

FIGURE 7. (a–c) White arrows: typical interimage incongruencies in
three twin pairs for feature 38, representing the spatial autocorrelation
of the lesion distribution (Geary’s c) and the intertwin incongruency
for feature 38 between the individuals in each twin pair. (a) MZ twin
pair with similar donutlike distribution of drusen in all four eyes, with
an intertwin incongruency of 0.890. (b) MZ twin pair with spread out
drusen in individual A, but homogenous drusen perifoveally in individ-
ual B and an intertwin incongruency of 1.62. (c) DZ twin pair with
spread out drusen in individual A but clustered in individual B in both
eyes and an intertwin incongruency of 11.7 with respect to feature 38.
The area covered by drusen (feature 23) was approximately identical in
each image in (a) and (b).

FIGURE 8. Feature 38, the Geary’s c statistic of drusen distribution, in
two images from two individuals in different twin sets, with similar
values for feature 23, total area of drusen, but highly different values
for feature 38, Geary’s c statistic. Left: fundus images, right: drusen
detected on the same scale.

FIGURE 9. Feature 41, a semivariogram of the drusen distribution, in
two images from two individuals from different twin sets, with similar
values for feature 23 (total area of drusen), but highly different values
for feature 41 (semivariogram). Left: fundus images; right: drusen
detected on the same scale.
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genes that have even modest influence on the drusen distri-
bution phenotypes. Potentially, the detectors that measure
drusen phenotypes will also be useful for evaluation of
larger nontwin populations of nonexudative AMD, such as
the subjects in the AREDS. We propose that phenotype dis-
covery from images using image analysis, quantification of
higher order statistics and use of a distance metric has the
potential to reveal phenotypic differences in other, extraocular
organs. In addition, this approach can also be applied to images
of other modalities such as fundus optical coherence tomog-
raphy and fundus autofluorescence. Finally, it may in the future
allow the role of genetic contribution to phenotype in unre-
lated individuals to be evaluated.

In summary, new, previously unrecognized, quantifiable
drusen distributional phenotypes were identified in fundus
photographs of twins with AMD. Most of the variation in these
phenotypes was found to be genetic. We expect that our
approach of automated discovery and quantification of pheno-
types with higher order statistics of images will also be useful
in other biological and medical fields in which visible pheno-
types are complex, and the genotypic associations are also
complex. The results of this preliminary study further support
efforts to search for the genes that control drusen distribu-
tional phenotypes, using an array of gene discovery ap-
proaches.

APPENDIX A

Automated Drusen Detection

Most images contained large (soft) and small (hard) drusen that
were detected and segmented using two automated algo-
rithms: shape- and texture-based. They were based on a wave-
let transform to increase the signal-to-noise ratio and allow
multiscale analysis. The shape-based detector was a slightly
modified version of a previously published microaneurysm
detector, used in the wavelet domain.35 The shape-based de-
tector was designed to detect hard drusen and small, distinct,
soft drusen. A texture-based detector was newly developed for
this study and models the distribution of the wavelet transform
coefficients in several frequency subbands, after preprocessing
(described more completely in Appendix B).35

APPENDIX B

Texture-Based Drusen Detector

The texture-based drusen detector consists of an optimal se-
quence of image processing and machine learning steps: (1)
Images are denoised with a small circular median filter, (2) the
green and the red channels of images are decomposed on three
levels, on the cubic B-spline wavelet basis, (3) the average and
standard deviation of the absolute value of the wavelet coeffi-
cients are extracted in each subband of the wavelet transform
of image patches of 64 � 64 pixels, and (4) the extracted
feature vectors are classified by a support vector machine. The
novelty of the proposed texture-based detector comes from
the selection of the processing sequence and parameters: They
are automatically selected by grammatical evolution among
several tunable processing steps.51 In particular, it turned out
that none of the eye fundus background normalization tech-
niques known in the art improved the classification accuracy.

Most soft drusen and confluent hard drusen are segmented
by this texture-based detector. Both detectors were trained on
a set of 100 previously annotated images of patients with AMD
containing soft and hard drusen, obtained from the de-identi-
fied cohort of the Iowa AMD Registry. Thus, none of the test
images was ever used for algorithm training. The output of

both texture- and shape-based detectors produce an output of
lesion probability maps that give the likelihood that each pixel
is part of a soft or hard drusen (Niemeijer M, et al. IOVS 2005;
46:ARVO E-Abstract 3468).52 In the shape-based detection
probability maps, pixels above a given probability threshold
were clustered to isolate individual drusen; only the drusen
center points were stored. Because a center point is ambig-
uous for noncircular soft drusen, a center point for these
lesions was not included in computing the algorithm. In-
stead the output was retained within the probability map.
Figure 1 shows examples of the outlines of the high-
probability areas. The shape-based automated drusen detec-
tor was compared with a human expert standard (obtained
by three experts) in a totally independent 12-image dataset:
A 74% agreement score was achieved at the pixel level
compared with the scores of the experts.

APPENDIX C

Drusen Distributional Features and Calculation of
Drusen Higher Order Statistics

Next, the detected and segmented drusen were automatically
quantified individually and as a group on the following char-
acteristics: color, texture, shape, quantity, and spatial distribu-
tion. As we did not want to bias the study in terms of these
specific candidate drusen features, we extensively reviewed
the digital image processing and quantitative biology literature,
to find candidate features. This resulted in the list of 41 features
that are listed in Table 1. When each feature required specifi-
cation of additional shape or scale parameters, these were
specified before analysis of any twin-pair images and were not
adjusted based on the results, to avoid selection bias and
over-fitting.

APPENDIX D

Image Incongruence between Images,
Df : Intertwin Incongruence for a Feature

For any pair of images, the incongruence was represented
mathematically by the arithmetic difference between the value
of convolution of each feature (filter) with each image. For
every twin pair, we defined the distance between twin A and
twin B as the ratio of the average intertwin image distances
(sum along the dashed arrows or [AL,BL�AR,BR�AL,BR�AR,
BL]/4; Fig. 2) and the average intratwin distances (average
along the solid arrows or [AL,AR�BL,BR]/2; Fig. 2).

If a feature analysis consisted of a vector or a maximum of
two values in this study (e.g., the average intensity in the red,
green, and blue color channels), then the image incongruence
was the Euclidian distance between these two vectors. Let df

(I, J) denote the image incongruence between the two images
I and J, with respect to a given feature f. Intertwin incongru-
ence between twins A and B was then defined as follows: Df (A,
B), the ratio between the average intertwin image incongru-
ence (I belonged to twin A and J to twin B), as well as the
average intratwin image incongruence (I and J belong to the
same twin). Let AR and AL (or BR and BL) denote the fundus
image of the left and of the right eye of twin A (or twin B). Df

(A, B) is then expressed as follows (see Fig. 2):

Df�A, B� �
df�AL, BL� � df�AL, BR� � df�AR, BL� � df�AR, BR�

2	df�AL, AR� � df�BL, BR�


For twin pairs in which one twin had had only one eye
photographed, the numerator’s sum consists of two terms and
the denominator’s sum consists of a single term.
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